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Dynamics of large solid particles in bioconvective sedimentation
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SUMMARY

Settling of one or two large solid particles in a bioconvection flow induced by gyrotactic motile microor-
ganisms is investigated using a 2D numerical model. The results of varying the initial positions of large
particles on the bioconvection flow pattern are investigated. The Chimera method is utilized to generate
subgrids around the moving particles. It is demonstrated that the introduction of a single large particle
displaces bioconvection plume and changes its shape. The introduction of two particles on the same side
of the bioconvection plume further displaces the plume while the introduction of two particles on opposite
sides reduces this displacement. The influence of the bioconvection plume on the particles’ settling paths
and particles’ settling velocities is investigated. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Bioconvection caused by gyrotactic microorganisms has been studied extensively, both experi-
mentally and numerically. Bioconvection provides a method for manipulating mass transfer and
inducing mixing in microvolumes of fluids that has potential pharmaceutical and bio-technological
applications (the importance of mixing in microfluidics is reviewed in Reference [1]). The results
of this paper bring to light the interaction between large particles and a bioconvection plume which
may be utilized in controlling sedimentation in microvolumes. Possible biomedical link of this
research is using bioconvection for faster dissolving of solid particles.
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Bioconvection is a phenomenon in which physical laws that govern smaller scales lead to a
phenomenon visible on a larger scale. While superfluidity and superconductivity are quantum phe-
nomena visible at the macroscale, bioconvection is a mesoscale phenomenon, in which the motion
of motile microorganisms induces a macroscopic motion in the fluid. Gyrotactic microorganisms,
such as Dunaliella, Chlamydomonas, Volvox, and Peridinium [2], swim in a particular direction
due to the balance of gravitational and viscous torques. Gyrotactic behaviour causes these micro-
organisms to accumulate in the regions of most rapid downflow. Since these microorganisms are
typically 3–5% heavier than water, the density of the suspension in the regions of downflow
becomes larger than in the regions of upflow. Buoyancy increases velocity fluctuations in both
upflow and downflow regions thus introducing a hydrodynamic instability [2–4]. The induced
convection fluid motion causes the development of bioconvection plumes.

Substantial research into sedimentation has been conducted. For large particles, sedimentation
velocity is related to wall separation distances [5]. In Reference [6] particle sedimentation and
rotation near a wall is simulated. Particle–particle interactions during sedimentation are studied
in Reference [7]. Singh and Joseph [8] extend the numerical research of particle sedimentation to
three dimensions. Gan et al. [9] present a direct numerical simulation of sedimentation in a flow
field induced by natural convection.

Preliminary research has been conducted involving the combined bioconvection-sedimentation
problem (called here bioconvective sedimentation). Geng and Kuznetsov [10, 11] investigate the
sedimentation of small solid particles in bioconvection. Sedimentation of a single large particle
during bioconvection is studied in Reference [12].

This paper investigates sedimentation of one and two large particles in a bioconvection plume.
The two-dimensional model considers two large circular particles (see Figure 1(a)) settling in a
chamber in which the bioconvection plume is fully developed. The height of the computational
domain is H and its width is L , where L is a typical plume spacing and � = H/L is the aspect
ratio of the chamber. This paper uses � = 2.

The stream function-vorticity method used here is applied to a multi-connected domain that
involves moving particles. In order to overcome the complication of imposing boundary condi-
tions at moving boundaries a method similar to that used in Reference [13] is incorporated. The
multiple and moving grid systems (see Figures 1(b) and (c)) are formulated using the Chimera
method [14, 15].

2. GOVERNING EQUATIONS

2.1. Dimensional governing equations

Governing equations for a bioconvection plume caused by gyrotactic microorganisms are given in
References [3, 4] as:
Momentum equation:

�0

(
�V
�t

+ (V · ∇)V
)

=−∇ pe + �∇2V + nm�m��mg (1)

Continuity equation:

∇ ·V= 0 (2)
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Figure 1. (a) Schematic diagram of two large particles settling in a bioconvection flow; (b) Chimera grid
system, global and subgrid meshes; and (c) Chimera grid system, subgrid mesh.
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Conservation of motile microorganisms:

�(nm)

�t
=−div(nmV + nmWmp̂ − Dm∇nm) (3)

where Dm is the diffusivity of microorganisms (it is assumed that all random motions of microor-
ganisms can be approximated by a diffusive process); g is the gravity vector; nm is the number
density of motile microorganisms; p̂ is the unit vector indicating the direction of microorganisms’
swimming (equations for this vector are obtained in Reference [2]); pe is the excess pressure (above
hydrostatic); V is the velocity vector, (u, v); t is the time; Wmp̂ is the vector of microorganisms’
average swimming velocity (Wm is assumed to be constant); ��m is the density difference between
microorganisms and water, �m − �0; �m is the volume of a microorganism; � is the dynamic
viscosity of the suspension, assumed to be approximately the same as that of water; and �0 is the
density of water.

Applying the second Newton’s law to particles, the motion of particles can be described by
Equations (4a) and (4b):

mp
dVx

dt
= Fx , mp

dVy

dt
= Fy, I

dx

dt
=T (4a)

where F= (Fx , Fy) is the total external force on a particle, I = mp(d2/8) is the polar moment of
inertia of a particle, mp = �p(�d

2/4) is the mass of a particle (d is the diameter of a particle), T is
the mechanical torque on a particle, and x is the particle’s angular velocity vector.

dxp
dt

= Vx ,
dyp
dt

= Vy,
d�

dt
= � (4b)

where � is the particle’s angular velocity and xp and yp are coordinates of particle’s centre.
In this research, the two particles are assumed to be of identical mass and size. Particle density

is uniform so that the particle geometrical centre is also its centre of mass.
The fluid exerts viscous and pressure forces on the surface of the particles. Since particles are

symmetric, the viscous friction on the surface of a particle provides the only contribution to the
torque:

Fx =
∫

�

(
�

�V�

�n
− pn

)
· x̂ ds (5a)

Fy =
∫

�

(
�

�V�

�n
− pn

)
· ŷ ds + �p − �0

�p
(�d2/4)g (5b)

T =
∫

�

(
�

�V�

�n
· d
2

)
ds (5c)

where p is the pressure on the surface of the particle, V� is the tangential fluid velocity along the
surface of a particle, and � is the surface of a particle.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:713–733
DOI: 10.1002/fld



DYNAMICS OF LARGE SOLID PARTICLES IN BIOCONVECTIVE SEDIMENTATION 717

2.2. Dimensionless governing equations

The governing equations are recast into the following dimensionless form by utilizing the
streamfunction-vorticity formulation:

�∗ =−∇2	∗ (6)

S−1
c

(
��∗

�t∗
+ u∗ ��∗

�x∗ + v∗ ��∗

�y∗

)
= ∇2�∗ −

(
Rm

�n∗
m

�x∗

)
(7)

�n∗
m

�t∗
=−∇ · [n∗

m(V∗ + W ∗
mp̂) − ∇n∗

m] (8)

The dimensionless variables in Equations (6)–(8) are defined as:

x∗ = x

L
, y∗ = y

L
, t∗ = Dm

L2
t, u∗ = �	∗

�y∗ , v∗ =−�	∗

�x∗ , V∗ =V
L

Dm

W ∗
m =Wm

L

Dm
, n∗

m = nm
nm

, Sc = 


Dm
, G = BDm

L2
, Rm = nm�m��mgL

3

�0
Dm

(9)

where G is the gyrotaxis number, Rm is the bioconvection Rayleigh number, Sc is the Schmidt
number, 
 is the kinematic viscosity of the suspension, and asterisks denote dimensionless quantities.

Microorganisms swim almost vertically upward; since they are gyrotactic (versus being nega-
tively gravitactic, in which case the swimming direction would be strictly vertical), there is a small
angle between the direction of their upswimming and the vertical line. For gyrotactic microor-
ganisms, the magnitude of microorganism velocity (10−4 m/s is the value used in this paper) is
independent of their position and concentration and is determined by species of microorganisms
only. By assuming spherical microorganisms and neglecting their inertia, Ghorai and Hill [3, 4]
have shown that the vector p̂, which determines the swimming direction of microorganisms, can
be computed as:

p̂=

⎧⎪⎪⎨
⎪⎪⎩

(−� − (�2 − 1)1/2, 0), �< − 1

(−�, (1 − �2)1/2), |�| � 1

(−� + (�2 − 1)1/2, 0), �>1

(10)

where �= B�=G�∗. The parameter B is called the ‘gyrotactic orientation parameter’ by Pedley
and Kessler [16]; it is defined as

B = 4��a3

mmgh
(11)

where a is the radius of a microorganism, h is the displacement of the centre of mass of a gyrotactic
microorganism from its centre of buoyancy, and mm is the mass of a microorganism.

2.3. Initial and boundary conditions

It is assumed that bioconvection plumes occur periodically. The two-dimensional computational
domain coincides with a periodic cell that contains a single bioconvection plume. It is assumed
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that the particles do not interact with any bioconvection plumes outside the computational domain.
Ghorai and Hill [4] studied the effect of the aspect ratio (� = H/L) on bioconvection and found that
the steady-state bioconvection plume was stable for � = 2. Increasing � slowed down the solution’s
convergence to steady state; oscillations were observed for � = 5 so that the steady state could
never be reached. This paper uses � = 2.

The no-slip boundary condition is utilized at the bottom wall. The top and the side boundaries of
the computational domain are assumed impermeable to the fluid and stress-free. The top surface of
the computational domain is assumed undeformed and strictly horizontal during the sedimentation
process.

It is assumed that there is no adhesion between microorganisms and the surface of the parti-
cles. For this reason, there is no need to postulate zero relative velocity between microorganisms
and the particle surface; it is assumed that microorganisms keep swimming regardless of the dis-
tance between the microorganisms and the particle surface. Furthermore, the continuum model
of bioconvection utilized in this research does not include a separate momentum equation for
microorganisms; therefore, mathematically such condition is not possible within the framework of
this model. It is possible, in principal, to develop a mesoscale model of bioconvection, which would
track the motion of every single microorganism and hence consider momentum conservation for
each microorganism. Such model could include a more detailed treatment of interactions between
microorganisms and the surface of the particle. However, in a typical dilute suspension there are
106 microorganisms in 1 cm3 of the suspension, which would make such computations impractical.

Under these assumptions, the boundary conditions for the computational domain can be presented
as:

	∗ = 0 at y∗ = 0, � and x∗ =± 0.5 (12a)

�	∗

�y∗ = 0 at y∗ = 0 (12b)

�2	∗

�y∗2 = 0 at y∗ = � and
�2	∗

�x∗2 = 0 at x∗ = ± 0.5 (12c)

Normal fluxes of microorganisms are zero through all boundaries of the computational domain and
the surfaces of the moving particles:

J∗
m · ŷ= 0 at y∗ = 0, �, J∗

m · x̂= 0 at x∗ = ± 0.5 (13a)

J∗
m · r̂= 0 at the surface of a moving particle (13b)

where x̂, ŷ, and r̂ are the unit vectors in the x-, y-, and r -directions, respectively, and

J∗
m = n∗

m(V∗ + W ∗
mp̂) − ∇n∗

m (14)

is the dimensionless flux of microorganisms.
The streamfunction and vorticity are defined in the polar coordinate system for the subgrids

created around the particles as follows:

�∗ = −
(

�2	∗

�r∗2 + 1

r∗
�	∗

�r∗ + 1

r∗2
�2	∗

��2

)
(15)
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V ∗
r = 1

r∗
�	∗

��
, V ∗

� = −�	∗

�r∗ (16)

where r∗ is a dimensionless coordinate used around the particle (see Figure 1(c)), and V ∗
r and V ∗

�
are the dimensionless velocity components in the polar coordinate system.

At the surface of the settling particles, the no-slip boundary condition is imposed. Geng and
Kuznetsov [12] have shown that the values of the streamfunction and vorticity on a moving boundary
in a multi-connected domain can be calculated numerically by the following procedure.

Using Taylor series expansion for 	∗(r∗, �) near the moving boundary, �2	∗/��2 on the particle
surface is expressed as

�2	∗

�r∗2 = 8	∗(1, �) − 	∗(2, �) − 7	∗(0, �) − 6�r(�	∗/�r∗)
2�r2

+ O((�r)4) (17)

The equation to calculate �∗(0, �) on the particle surface is derived by substituting Equation (17)
into Equation (15):

�∗(0, �) =
(−6�r + (2(�r)2/r0)

)
V ∗

� (0, �) − (8	∗(1, �) − 	∗(2, �) − 7	∗(0, �))

2(�r)2
− 1

r0

�V ∗
r

��

(18)

where r0 is the radius of the particle.
To calculate the boundary values of the streamfunction on a moving boundary, Equation (1)

is multiplied by a unit tangential vector ŝ along the surface of a particle. Ignoring the pressure
difference along the particle’s surface, the following equation for 	∗(0, �) is obtained:

	∗(0, �) = −4(�r)3M − 8(�r)2�∗(1, �) + 2(�r)2�∗(2, �)

21
+ (6�r − 2[(�r)2/r0])V ∗

� (0, �)

7

+ 8

7
	∗(1, �) − 1

7
	∗(2, �) + 2

7

(�r)2

r0

�V ∗
r

��
(19)

where

M = ��∗

�n
= − 1

Sc

(
�V∗

�

�t∗
+ (V∗ · ∇)V∗

�

)
− Rmnmŷ · ŝ (20)

Initially, at t∗ = 0, the bioconvection plume is assumed fully developed. The two particles are
released just beneath the free surface to keep all subgrid nodes located inside the computational
domain. It is assumed that the particles’ initial velocity is zero.

2.4. Numerical procedure

In this paper, following the Chimera method [14], two subgrids are created; one around each particle,
and a global rectangular grid is created for the global flow field, as demonstrated in Figures 1(b)
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and (c). Governing Equations (6)–(8) for the global grid and the two subgrids are solved separately.
The exchange of information between the global grid and the subgrids is implemented by interpo-
lation. The unknown boundary values of variables on the subgrids are computed by interpolating
these boundary points onto the known global grid. Therefore, the computational problem for the
subgrids is transformed to a boundary value problem. The same procedure is required for com-
putations on the global grid except that two artificial unknown inner boundaries (projected onto
subgrids) are created around the moving particles.

A conservative finite-difference scheme is utilized to discretize the governing equations in both
the Cartesian and polar coordinate systems. An implicit scheme with Euler backward differencing
in time and central differencing in space is utilized. A line-by-line tri-diagonal matrix algorithm
and an iteration technique with over-relaxation for the number density of microorganisms on the
global grid and under-relaxation for other variables for both global and subgrid nodal points is
used to solve the discretized equations. A staggered mesh is utilized in which the streamfunction
and vorticity are stored in one nodal set while the number density of microorganisms is stored in
another nodal set. Computations are performed on a 3.0 GHz Intel Xeon processor. Typical CPU
time required to investigate particles settling from just beneath the free surface to near the bottom
of the computational domain for a 36× 72 uniform global mesh and two 15× 36 non-uniform
curvilinear meshes is 200 h. It is established that further refinement of the computational meshes
does not significantly impact the results.

3. RESULTS AND DISCUSSION

Values of physical properties and dimensionless parameters utilized in computations are summarized
in Table I. The parameters of microorganisms are identical to those given in Table I of Reference
[4].

Bioconvection flows are characterized by small Reynolds numbers. Reynolds number in biocon-
vection flows can be defined by several different ways. Kessler [17] defined the Reynolds number
as follows:

Rem = Wma�0
�

= (10−4 m/s)(5× 10−6 m)(103 kg/m3)

10−3 Pa s
= 5× 10−4

where a is the radius of a microorganism (= 5× 10−6 m).
If the lengthscale is changed to the particle radius, the Reynolds number is

Rep = Wmr0�0
�

= (10−4 m/s)(9× 10−5 m)(103 kg/m3)

10−3 Pa s
= 9× 10−3

A typical fluid convection velocity in bioconvection can be estimated as twice of Wm, so if velocity
scale is changed to the maximum fluid velocity, these Reynolds numbers are approximately doubled.
In summary, Re� 1 for any of the above definitions of the Reynolds number.

Four cases with different particle initial positions are investigated. The same initial position
(x∗ =−0.3, y∗ = 1.8) is used for one particle (denoted Particle 1) in all cases (A–D). In Case A
Particle 1 is released by itself while in Cases B–D a second particle (denoted Particle 2) is released
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Table I. Physical properties, geometrical parameters, and values of dimensionless parameters
utilized in computations.

Average number density of microorganisms nm 1012 cells/m3

Density of water �0 103 kg/m3

Density of microorganisms �m 1.05× 103 kg/m3

Volume of a microorganism �m 5× 10−16 m3

Average swimming velocity of microorganisms Wm 10−4 m/s
Diffusivity of microorganisms Dm 5× 10−8 m2/s
Gyrotaxis orientation parameter B 5 s
Kinematic viscosity of the suspension 
 10−6 m2/s
Height of the computational domain H 0.01 m
Width of the computational domain L 0.005 m

Dimensionless average swimming velocity of
microorganisms

W∗
m =Wm

L

Dm
10

Schmidt number Sc = 

Dm

20

Gyrotaxis number G = BDm

L2
10−2

Bioconvection Rayleigh number Rm = nm�m��mgL3

�0
Dm
612.5

Aspect ratio of the computational domain �= H

L
2

Radius of the particles r0 9× 10−5 m
Density of the particles �p 1.2× 103 kg/m3

Table II. Initial positions of particle centres for Cases A–D.

Case A Case B Case C Case D

Particle 1 (x∗, y∗) (−0.3, 1.8) (−0.3, 1.8) (−0.3, 1.8) (−0.3, 1.8)
Particle 2 (x∗, y∗) No Particle 2 in Case A (−0.1, 1.8) (0.1, 1.8) (0.3, 1.8)

at varing positions. Positions of centres of the particles at t = 0 are summarized in Table II. Particles
are released beneath the free surface so that the subgrids are located completely inside the global
grid; since the vertical position of the free surface corresponds to y∗ = 2.0, the centres of the
particles are initially located at y∗ = 1.8.

3.1. No particles

To quantify the influence of particle sedimentation, a purely bioconvection flow pattern is used
as a reference (depicted in Figure 2). Figure 2(a) shows the dimensionless number density of
microorganisms, Figure 2(b) shows contour lines of the dimensionless vorticity, Figure 2(c) displays
contour lines of the dimensionless streamfunction, and Figure 2(d) shows the vector field of the
fluid velocity. The bioconvection plume is located in the centre of the computational domain. The
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Figure 2. Steady-state bioconvection plume: (a) dimensionless number density of mi-
croorganisms; (b) contour lines of the dimensionless vorticity; (c) contour lines of the

dimensionless streamfunction; and (d) vector field of fluid velocity.
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number density of microorganisms takes on its maximum value (a global maximum) in the center
of the free surface (marked by G in Figure 2(a)). The fluid flow is directed downward in the centre
of the domain and upward at its periphery, this flow transports microorganisms from the upper fluid
layer to the bottom of the domain and causes a local maximum of their number density (marked
by L in Figure 2(a)). The number density of microorganisms takes on its minimum value at the
bottom corners of the computational domain (marked by M in Figure 2(a)).

Data presented in Figure 2 are in good agreement with those plotted in Figure 9 of
Reference [3].

3.2. Single particle (Case A)

In Case A Particle 1 is released by itself in the bioconvection plume. Figure 3 shows the dimen-
sionless number density of microorganisms, contour lines of the dimensionless vorticity, contour
lines of the dimensionless streamfunction, and a vector field of the fluid velocity for Case A 1.0 s
after Particle 1 is released. Figure 3(a) shows that the bioconvection plume is displaced away from
Particle 1 as the particle settles on the left side of the bioconvection plume. Convective circu-
lations are developed on both sides of the particle. The convective circulation on the right side
of the particle is stronger than on the left (see Figures 3(c) and (d)). Comparing Figure 3(a) with
Figure 2(a) it is evident that the maximum value of the number density of microorganisms is shifted
from the centre of the free surface to the left and is located directly above the particle (the meanings
of G, L, and M in Figure 3(a) are the same as that in Figure 2(a)). To the left of the particle in the
upper part of the computational domain the fluid velocity is directed downward while in the lower
part of the domain the fluid velocity is directed upward (the sheer-free boundary condition used at
the domain’s side walls implies that the horizontal velocity vanishes but the vertical velocity does
not). Counter-propagating vertical jets (marked by block arrows in Figure 3(d)) collide to the left
of the particle and create a horizontal jet directed to the right. Figure 7(d) shows that Particle 1 is
displaced by this horizontal jet from x∗ = −0.3 to −0.2 as it settles.

3.3. Multiple particles (Cases B–D)

To see how the two particles affect bioconvection as well as how they influence each other’s
sedimentation, Particle 2 is released simultaneously with Particle 1. Particle 1 retains the same
initial position while the initial position of Particle 2 is varied (see Table II).

In Case B (Figure 4) Particle 2 is also released to the left of the plume (at x∗ =−0.1). The
bioconvection plume is pushed to the right and away from the settling particles. By the end of
sedimentation, both particles are displaced from the left side of the computational domain to the
centre of the domain. Figure 4(a) shows that at t = 1.1 s Particle 2 has a lower vertical position
than Particle 1 reflecting a larger downward vertical velocity. This is because the bioconvection
velocity is directed downward in the centre of the domain and upward at its periphery. Figure 4(d)
(t = 0.1 s) shows that convective circulation around Particle 2 is stronger than around Particle 1, so
that Particle 1 is displaced to the left in the beginning of the sedimentation process (see Figure 7(a)).
In Figure 4(d) (t = 0.5s), similarly to case A, counter-propagating jets develop to the left of Particle
1. The fluid velocity is downward to the left of Particle 1 in the upper part of the computational
domain and upward in the lower part of the domain. A horizontal jet develops displacing Particle 1
to the right (as in Case A in Figure 3). Another horizontal jet is generated between the two particles
because of the collision of the two vertical counter-propagating jets marked by block arrows in
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Figure 3. Case A, t = 1.0 s: (a) dimensionless number density of microorganisms; (b)
contour lines of the dimensionless vorticity; (c) contour lines of the dimensionless

streamfunction; and (d) vector field of fluid velocity.
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Figure 4. Case B: (a) dimensionless number density of microorganisms; (b) con-
tour lines of the dimensionless vorticity; (c) contour lines of the dimensionless

streamfunction, and (d) vector field of fluid velocity.
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Figure 4. Continued.

Figure 4(d) (t = 1.1 s). This horizontal jet pushes Particle 2 to the right. The paths of the particle
centres for Case B are displayed in Figure 7(a). As explained above, initially Particle 1 is displaced
to the left by the convective circulation caused by Particle 2. Later the horizontal jet developed
during sedimentation pushes Particle 1 to the right. Particle 2 is displaced to the right during the
whole duration of the sedimentation process by the horizontal jet generated between Particles 1 and
2. Comparing Figures 4(a) (t = 1.1 s) and 3(a), it is evident that the bioconvection plume has larger
horizontal displacement in Case B than in Case A, which means that introducing an additional
particle on the same side of the plume increases the displacement of the bioconvection plume.

In Case C (Figure 5), Particle 2 is released to the right of the plume, at x∗ = 0.1, thus the
convective circulations induced by the two particles are more symmetric. Figure 5(a) shows that
the displacement of the bioconvection plume to the right is less than in Cases A and B. Particle
1, which is farther away from the centre of the plume than Particle 2, has more effect on the
plume displacement, implying a direct relation between particle distance from the plume centre
and influence on plume displacement. Obviously, moving the particle far away from the plume will
diminish this influence; therefore, it is expected that there exists an optimal distance at which the
particle’s effect on the plume is the strongest. Both particles move to the right during sedimentation
as seen in Figure 7(b). The distance between the particles in Case C is too great for the convection
circulation around Particle 2 to have any noticeable effect on Particle 1. Recall that this is not
so in Case B (Figure 4(d)) where the particles are closely spaced and the convection circulation
around Particle 2 influences Particle 1 by initially displacing it to the left (Figure 7(a)). Particle
2 has larger vertical velocity than Particle 1. The paths of the particle centres for Case C are
displayed in Figure 7(b). Particle 2 exhibits larger horizontal displacement than Particle 1 during
sedimentation.

In Case D (Figure 6), the two particles are initially positioned symmetrically relative to the
vertical centreline of the bioconvection plume, so that for Particle 2, x∗ = 0.3. Sedimentation occurs
symmetrically and the two particles settle without significantly changing the shape and location
of the bioconvection plume. Comparing Figure 2 (no particles) and Figure 6(a) (t = 0.5 s), it is
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Figure 5. Case C: (a) dimensionless number density of microorganisms; (b) con-
tour lines of the dimensionless vorticity; (c) contour lines of the dimensionless

streamfunction; and (d) vector field of fluid velocity.
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Figure 5. Continued.

evident that the particles have a constructive influence, locally reducing the width of the plume
in a horizontal plane where the particles are located. No noticeable horizontal jets are found in
Figure 6(d), which means that the horizontal displacements that the two particles exhibit are caused
by bioconvection. The paths of particle centres for Case D are displayed in Figure 7(c). The two
particles move from the periphery of the domain toward its centre during sedimentation because of
bioconvection. The bioconvection flow is directed toward the plume’s centre in the upper part the
domain and away from the plume’s centre in the lower part of the domain. This explains why the
particles are displaced toward the centre of the domain during sedimentation, moving first with an
increasing horizontal velocity and then with a decreasing horizontal velocity.

The paths of Particle 1 (Cases A–D) are summarized in Figure 7(d). Particle 1 exhibits a
large horizontal displacement in Case A while with the addition of Particle 2 in Cases B–
D this displacement decreases. The presence of Particle 2 increases the symmetry of convec-
tion. The greater the distance between the two particles initially, the less Particle 1’s course
is altered.

In order to additionally validate numerical results, Figures 8(a) and (b) displays the dimensionless
y-velocity, V ∗

y , of Particles 1 and 2, respectively, for various cases. The horizontal lines in Figures
8(a) and (b) show the particle terminal velocity resulting from the balance of the gravitational force
and drag on the particle:

FD = (�p − �0)(�r
2
0 )g (21)

The particle terminal velocity, U , is found by substituting Equation (21) into the following exper-
imental curve-fit correlation for a drag coefficient in a flow past a circular cylinder suggested by
Sucker and Brauer [18]:

CD = FD
�0U 2r0

≈ 1.18 + 6.8

Re0.89
+ 1.96

Re0.5
− 0.0004Re

1 + 3.64× 10−7Re2
(22)

where Re= 2Ur0/
 and FD is the drag on the cylinder.
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Figure 6. Case D: (a) dimensionless number density of microorganisms; (b) con-
tour lines of the dimensionless vorticity; (c) contour lines of the dimensionless

streamfunction; and (d) vector field of fluid velocity.
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Figure 6. Continued.

Figure 8 shows that particle velocities at the end of the sedimentation process approach the
particle terminal velocity (obtained using experimental correlation (22)) in all Cases A–D, which
validates the obtained numerical results. The settling velocity of the particles at the end of sed-
imentation is a little smaller than the particle terminal velocity because the bioconvection flow
creates a ‘pillow’ at the bottom of the chamber and slows down sedimentation. Another rea-
son for slowing down the particle as it approaches the bottom (this reason would exist even if
the fluid contained no microorganisms) is that the upflow is required to replace the mass dis-
placed by the sedimenting particle. At the end of sedimentation, the particle velocity of the
single particle case (Case A) is closer to U than that of the multiple particle cases (Cases B–
D). This is apparently a result of the interaction of the multiple particles with the bioconvection
plume.

4. CONCLUSIONS

Sedimentation of one and two large particles suddenly released in a fully developed bioconvection
plume is investigated. Particle sedimentation changes the shape and location of the bioconvec-
tion plume. Settling of a single particle to one side of the plume shifts the bioconvection plume
away from the particle. Increasing geometric similarity about the plume centre for multiple parti-
cle sedimentation decreases plume displacement while decreasing this similarity increases plume
displacement. The particles’ settling is also affected by bioconvection. Because of bioconvection,
particles are pushed in both vertical and horizontal directions. The direct interaction between the
bioconvection plume and the particles as well as the indirect interaction between the two parti-
cles depends on the initial position of the particles. The computational results suggest evidence
of an optimal distance between the vertical symmetry plane of the unit cell and the initial posi-
tion of the particle at which the particle’s effect on the plume is the strongest. Further numerical
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Figure 7. Paths of particle centres for: (a) Case B; (b) Case C; (c) Case D; and (d) paths
of the centre of Particle 1 for Cases A–D.

studies are needed to understand whether the introduction of large particles can result in the
plume breaking apart, forming two or multiple bioconvection plumes. These studies should in-
volve multiple unit cells, which would allow investigating the effect of multiple plumes on particle
sedimentation.
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